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ABSTRACT

This report presents a first—order discussion of the perturbations

in the orbital motion of a satellite about an oblate primary. The

approach is non—traditional in that the secular changes in the semi—

major axis, eccentricity, inclination, and longitude of the ascending

node are all derived directly from the translational and rotational

equations of motion. The exactly solvable problem of motion in the

primary’s equatorial plane is used to obtain the advance of the argument

of periastron and the consequent change in the time of periastron passage.

In addition, a simple discussion of a very restricted three—body problem

is given to illustrate the effects of third—body perturbations.
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I.
1. INTRODUCTION

A. Motivation and Outline

Celestial mechanics is one of the oldest fields of study in physics

and astronomy. With the advent of the space age and the rapid development

of the electronic digital computer, the field has undergone a resurgence

of both theoretical development and practical use. Old subjects have

their own vocabulary, their own mathematical methods, their own symbolism,

their own assumed knowledge base, etc. Although many scientists and

engineers lack this specialized training, there is still the need for

them to be cognizant of the principal results of the two—body problem

and of perturbation theory. For most artificial satellites, the principal

perturbation is that due to the oblateness of the earth (symbolized by a

non—zero value for J
2). In this report I derive all of the first—order

secular variations due to in a non—traditional (for a celestial

mechanic) fashion. Thus, one can see, without the appurtenances of

celestial mechanics, both the physical cause of the perturbations and

their effects. Some of these results are scattered in the standard

reference books. However, the treatment of the exact solution for motion

in the earth’ s equatorial plane is new. Finally, as the satellite’s

distance from the earth increases, the perturbations of its motion due

to the sun and the moon become more important . Hence , a very simple

treatment of third—body perturbations is also included.

The report has some caveats the reader needs to know. First,

because almost no new physics is involved, the equations have been kept

1
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to a minimum. Second, to keep th traruewor~ 01 tii~~ Ji6eussiJ1~ constant ,

this Is a geocentric report. Nowhere is any particular property of the

earth used nor does the geocentric aspect limit the discussion. Lastly,

except for §IID* , the entire report is for first—order perturbation

theory only. Extrapolating the conclusions reached herein beyond this

limitation is not necessarily correct.

We next present brief sunanaries of two—body elliptic motion and the

geopotentlal. Following that is a detailed discussion of motion in the

earth’s equatorial plane. This illustrates various techniques of analysis

and an analytic solution to such a problem. We then turn to motion in

any plane and exhibit another method of analysis. This time the equations

for the rates of change of the angular momentum and the energy are used

to further our understanding of the motion. This section closes with

tbt’  perturbation equations in the classical form. The last section

deals with a primitive three—body problem so that the effects of the sun

and moon can be illustrated.

B. Brief Summary of Two—Body Elliptic Motion

The classical two—body problem has the artifical satellite, of

negligible mass m, revolving about the earth whose mass is N .  The

coordinate system with origin at the center of mass of the earth is

assumed to be an inertial one. We will take the extension of the earth’s

~ equator as the xy plane and have the x axis point in the direction of the Vernal

Equinox. The z axis points in the direction of the North Celestial Pole

*Equations (46 , 47) are exact but our handling of them is first—order.

2
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and the y axis completes a right—handed triple. The force is central

[the potential is given in Eq. (llc)] so the motion takes place in a

plane. The plane’s normal is the angular momentum vector. The form of

the orbit is an ellipse which can be parametrically described by

r = a(l—e2)/(l + ecosv) (la)

or

r a(l — ecosE). (ib)

The ellipse ’s semi—major axis is a, its eccentricity is e, v is the

azimuthal coordinate in the orbital plane measured from the point of

closest approach (i.e., perigee; v is also called the true anomaly), and

E is an auxiliary angular variable named the eccentric anomaly. For an

arbitrary orientation of polar coordinates in the orbital plane the

distance, r, would be given by

r a(l—e2)/[l + ecos(u—w)], (lc)

u v + w , (2)

I
!

where to is called the argument of perigee. See Figure 1. The time

dependence of the orbit is implicitly given by the relationships between

the true anomaly, the eccentric anomaly, and the mean anomaly, M;

~~~___________________ ~~~
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tan(v/2) = [(1 + e)/ ( l  — e)]~~
’2
tan (E/2) , (3)

B — esinE M n(t — T) n(t — T0) + M , (4)

where the mean motion, n, is related to the semi—major axis and period,

P. of the motion by

1/2 1/2
n (GM,/a

3) (u /a3) 2rr / P.  (5)

G is the universal constant of gravitation. The standard epoch is the time

of perigee passage, T, when M = 0. If some other, arb itrary, epoch t

is used, then 1’! = H at that instant.
0

To complete the three dimensional picture of the motion, we need to
A

know the direction of the angular momentum vector, L,

L (sin~sini, —cos~sini, cosi). (6a)

The inclination of the orbital plane to the equator is symbolized by

ic[O ,180°]. That place on the equator where the plane of the orbit

intersects it and the satellite is moving northward is called the ascending

node. ~ is the longitude of the ascending node, ~c[O ,36O°). See Figure 2.

The magnitude of the angular momentum vector is given by mL,
I .

2 1/2 A

L Ipa(l — e )] , L — LL. (6b)

5
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The angle (for which there is no standard notation) to + C2 is called the

longitude of perigee. Finally, to go from the cartesian orbital plane

location vector

r = r(cosv,sinv,o) ,  (7a)

to the cartesian geocentric location vector or spherical geocentric

location vector ,

/ x /cosiScosct

= ( y — r( cosSsinct , (7b)

z S sin6

we need to rotate by the orthogonal matrix 5,

• cos~ —sine 0 1 0 0 coew —sinw 0

S a sin~2 cos1~ 0 0 cosi —sini sinw coaw 0 . (7c)

0 0 1 O s ini cosi 0 0 1

The results are

-

~ 

- 
x/r — cos~cosu — sin~2cosisinu,

y/r — sin~cosu + cos1~cosisinu , (8)

z/r — sinisinu

, 7
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or

-1
= i’2 + tan (cositanu) , (9a)

— sin~~(sinisinu) , (9b)

where u was defined in Eq. (2). Alternative expressions of the invariable

plane are

xsin~sini — ycos~sini + zcosi = 0 (lOa)

and

tanô = tanisin(a — 
~~
) .  (lob)

All of this is derived directly from the equations of motion. In the

plane of the orbit their form is

— r~’ — — au/ar; dw/dt ~, Vw, (h a)

rV + 2~v — — (l/r)aU/av , (lib)

U —uk . (llc)

The key to the solution of the two—body problem and the remainder of the

analysis presented herein is the ability to analytically integrate Eq. (lib)

once.

8
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C. Brief Summary of the Geopotential Through J

The gravitational potential at a point located r outside of a body

whose mass density is p is given by

p (r’)dr’
U (r)  — —G f 

~r — r ’t (12)
Volume L

If one uses the spherical harmonic expansion of the denominator of the

integral one finds, through second—order terms,

U(r) (G/r)fp(r ’)dr ’ — (G/r 2)fr ’p(r ’)cos8dr’

+ (G/2 r2)f(r’?p(x.’)(]. — 3cos
2
~ )dr ’. (13)

The angle between r and r ’ is denoted by ~~~. The first integral is the total

mass (M, for the earth). The second integral vanishes because the origin of

the coordinate system is at the center of mass. The third integral is equal

to [(three times the moment of inertia about the line joining the center of

mass and r) minus (the sum of the principal moments of inertia)]. If we employ

the symmetry of an oblate spheroid and express the last integral in terms of

the principal moments of inertia of the spheroid (A — equatorial moment of

inertia, C — polar moment of inertia) then

U (r ,ô) — — (u/r)[1 + J2R~ (1 — 3sin2ó)/ (2r 2)]  (14a)

where

— (A — C)/ (M.R
~

) — 1.0827 x l0~~ for the earth , (14b)

9
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and ~S is the geocentric latitude of r. We shaht abbr.~viate

— J
2R~ , (15)

and note that the ratio of the forces due to the earth’s to~a1 mass and that

due to its oblateness on an object a distance R > away is

£ fIR
2. (16)

For a stationary satellite, c 2.5 x l0~~ 5 arc seconds.

- ~~ ~
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II. MOTION IN THE EARTh’S EQUATORIAL PLANE

With 6 — 0 the potential, from Eq. (14a), is

U(r ,O) - (u/r)(l + J2R~/2r
2) — - (p/r)(l + ~/2r

2). (17)

The equations of motion, Eqs. (ila, lib), have the two integrals

(i~
2 
+ r~”~ )/2 + U(r ,0) — E(c 0 here), (18a)

— L (> 0 always). (18b)

The existence of the angular momentum integral allows a discussion of the

orbit, r(v), instead of the time dependence of the motion. Since,

r’ E dr/dy — i~/~r , * — Lr’/r 2. (19)

The conservation of energy equation, Eq. (18a), can be written as

(r’)2 + r2 — 2r41E — U(r ,O) ] /L2. (20)

When — 0 the semi—major axis and eccentricity were defined by

a - - 
~/2E, e

2 
— 1 + 2EL2/u

2. (21)

I
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As long as is small , these quantities will have a meaningful interpretation

as a “semi—major axis” and “eccentricity ”. In any case, they too are constants

of the motion. Eliminating E and L2 from Eq. (20), the equation describing

the orbit may be reexpressed as

(r ’) 2 — — rF(r)/1a2(1 — e2)]~~
2, (22 a)

• with

F(r) — r( r — r~ ) ( r  — r )  — a~ , (22b)

and

— a(l 
± 
e). (22c)

This will be the starting point for the remainder of the analysis presented

in III. We note that if J
2 
were zero, then the roots of F would be 0, r

(perigee distance), and r
+ 
(apogee distance).

A. Circular Orbits

A circular orbit is always possible for non—zero and always stable

f or small J2. Since r’ — 0, the radius of the orbit is a root of F. It’s

actually simpler to derive it from Eq. (20). The result is (c — rj/a 2 )

radius — (a/2)[l + (1 — 6E)1’2J<a . (23)

12 
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Thus, the only effect is to reduce the size of the orbit. But from Eq. (17) we

see that if r is constant, then a positive J
2 merely augments the central mass;

hence for the same energy the satellite would be more tightly bound .

B. “Elliptical Orbits”: Apogee and Perigee

• It is clear from Eq. (22a) that the roots of F represent the turning

points of the orbit. It is a simple matter to show that F has three real

roots (two of which are equal for a circular orbit) and we know that as

-
~~ 0 they must approach 0, r_, and r

~
. The one near zero Is not a physical

turning point. Let us call the three true roots of F (for # 0), R0,

• R (for perigee) , and K (for apogee). Their values can be approximated

through the use of Newton’s method. One finds (c = fl/a2 still)

R
0 

ag/(l — e2), (24a)

r — ac/[2e(l — e)] < r , • (24b)

R r~ + ac/12e(l + e)] > r~ . (24c)

Thus, perigee is closer in and apogee further out for the perturbed “ellipse”

than for the unperturbed ellipse. The “semi—major axis” , A , and “eccentricity”,

E , can be derived by using the formulas for elliptical motion, namely

2A — Ks + R , (25a)

F
13
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2 A E — R  — K , (25b)

a p

or

A/a — 1 - £/[2(l - e2)] < 1, (26a)

E/e — 1 + c/(l + e2)/[2e2U — e2)] > 1. (26b)

We already knew that the “focal distance” was smaller and we now see that

the reason is that the “eccentricity” is larger and the “semi—major axis” is

smaller.

It now seems logical to ask about the utility of

• r A(l — E2)/(l + Ecosv), (27)

as a representation of the orbit. If we express this through first order in

y~ we find

r — r (v) — 
ac(cosv + 3e+ 3e2cosv + e

3) (28 )
2e(1. — e )(l + ecosv)

where

r (v) — a(1 — e2) / (1 + ecosv). (28b)

14
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Equation (27) can only represent the orbit except for those terms in v which

vanish at v — 0 and v n. However, the value of r at the turning points is

independent of v, so that there can be no secular change in A or E due to J2.

C. “Elliptical Orbits”: The Orbit

Assuming that Eqs. (22) can not be exactly solved, we try a physicist’s

perturbation approach. We write

r(v) — r (v) + cr1(v) + £
2r2(v) + . . . , (29)

substitute this into the equation, separate powers of c, and solve the result-

ing system of equations. If we do this [but we actually use r(v) — r0(v)

+ £(l — e2)r1(v) for simplicity] the coefficient of £ (which must vanish) is

r~ + p(v)r1 
— q(v),

p(v) — (ecoa2v — cosv — 2e)cosv/(l + ecosv), (30b)

q(v) — a(l + ecosv)cscv/12e(]. — e2)2]. (30c)

The solution of Eqs. (30) for r1(v) is

r ( )  — 
Csinv 

— 
ajcosv + 3e + 3e2(cosv + vsinv) + e3(l + sin2v)] (30d)

(1 + ecosv)2 2e(1 — e2)(l + ecosv)2

15
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The arbitrary constant of integration is C and the initial condition

is r(O) — K with the expression (24b) used for R~. Although the initial

condition does not determine the value of C, the existence and uniqueness

theorem for the differential equation (30a—c) allows us to set C — 0. Hence,

r (v) — r (v) — 
ac[ cosv + 3e + 3e2(cosv + vsinv) + e3(l + sin2vfl (31)

2e(l — e )( 1 + ecosv)

Compare with Eqs. (28).

We can now extend our analysis to compute the advance of perigee.

The presence of the secular term, ~~ vsinv, means that although r(O) — r(2it)

= r(4ir) — . . . and r(1r) — r(31r) — r(5n) . . . (cf. page 14), it is not
necessarily true that the minimum and maximum values of r occur at these true

anomalies. By construction, the first perigee occurs for v — 0. We know the

first apogee must occur near v — it [cf. Eq. (Ia) or (28b)]. By computing

r’(v) from Eq. (31), setting v — V
a 

a ¶ + CV in the result, and solving for

Va 
by expanding all terms through first order in c we f ind

v
a = ir{l + 3e/[2(l — e2)

2
]} > (32a)

I

Similarly, the second perigee must occur near v — 2n , and an analogous

procedure yields

— 2V > 2ir. (32b)

Hence , the advance of the argument of perigee is symmetrically distributed

16



over each half of the orbit. Clearly the time of perigee passage does not

increase by only P. Its change is given by (v~ 
— 2w)/<~r> where the angular

bracket denotes an average angular rate. A simple average f or ~ is obtained

from Eq. (l8b) at the perigee and apogee points, whence

T — P 31tc/[n(l — e2)3’~
2
] > 0. (33)

The reader may notice that r(ir) = K with R
a given by Eq. (24c) and then

wonder why V
a 
of Eq. (32a) is greater than ii. The reason is that the Taylor

series for the cosine contains no first—order terms.

Finally, to illustrate these effects in an exaggerated fashion Eq. (31)

has been graphed for a — 1, e a 0.25, e 0.05 and £ 0.10 at 100 intervals

in the true anomaly. The solution of Eqs. (22) in the form given by Eq. (29)

can not be reliably carried out beyond £v “a 1 except by piecewise continuation.

D. The Exact Solution -

The exact solution of Eqs. (22a , b) involves elliptic functions. We

need , at minimum, the sine amplitude, an , the cosine amplitude, cn, and the

delta amplitude, dn. We can define the sine amplitude via

2 2 l’2f (1 — K sin 0) ‘ dO, sn(u, K) sin4, (34b)
0

and the others by

sn2Ol, K) + cn2(p, K) — 1, (34a)

Ksn2(u, K) + dn2(u~, K) — 1. (34c)

17
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While these functions have various addition theorems, half—angle formulas,

periodicities, etc. we shall need few of them here. In particular though,

sn2(M/2 ,K) — 11 — cn(p,K)]/Ll + dn(p,K)], (35a)

cn2(ii/2,,c) — [cn(~j,K) + dn(p,K)]/[l + dn(~i,K)], (35b)

• dn2(1j/2,K) — ~cn(ji,,c) + dn(ij,,c)]/fl + cn(Ii,K)], (35c)

sn(jj ± v,K) — + s~~~, ( d n ~ i,~~ j, (35d)
1 — K an (p,ic)sn (v,,c)

sn [K( K) , K] 1, (36a)

• snIl.i + 4K(K), K] — sn(1.I,K), (36b)

where the complete elliptic integral of the first kind, K, is given by

K(K) f
ir/2 

- K~5i1~O)U2dO. (36c)
0

The quantity K is called the modulus. The last thing we need to know is that

any integral of the form

R
1

(x) + R2(x)P~”2(x) . 
I 4I — f } ’  

1/2 dx , (37) f -
y1 R3

(x) + R4(x)P (x)

where R~ (x)~ i — 1,2,3,4 is a rational function of x and P is a quartic

polynomial in x with real coefficients, can be reduced to an elliptic

function (or sum of them).

20
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Now, Eqs. (22a, 22b.) are of the form (37) if we rewrite them as

dr/dy - ± {-rF(r)/ [a
2(l - e2)J}u/2. (38)

We also know that r’ > 0 for vC[O, va
] and r ’ < 0 for VC IV , v]. The true

anomalies of first apogee passage and second perigee passages are approximately

given in Eqs. (32). Thus,

r +1 Vds 
1/2 2 1/2 

f dw; R < r < K , 0 < v < V , (39a)
[—sF(s) ] a(l — e )  o p

f

r ds 
2 

— 
—l 

2 f~dw; R < r < R~~ ~~ 
< v < v . (39b)

K [—sF(s)] a(l — e )  V 
p p

a a

There exists a standard technique for reducing integrals of the form (37)

to the standard forms [of which (34a) is one example]. The results are

for our cases

IL - R  r - R l
yv/2 — 

- R 
• 

r - K0] 
, k); vcfo,v], (40a)

fIR R _ r 1 l~’2 \
y(v - V

a)/2 
— sfl I%JR — 

- a 
r j k

,) 
; vC [v ,v ] ,  (40b)

where the modulus, k is given by

-. 
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R (g — K )
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (40c)

and the quantity y is given by

R(R — R )
— 

p a 
2 

~2 + 1 as c + 0. (40d)
a ( l— e )

If we use Eqs. (34, 35, and 36) then both of Eqs. (40a, b) can be

transformed into

R0R {f1 + dn(yv ,k)] —k2 [1 — cn (yv ,k)]}
r(v) — p 

2 
(41)

R [ l  + dn (yv ,k)] — R k  11 — cn (yv ,k) ]

We can now rederive all of our earlier work as a check. From Eq. (36c)

we see that if K is small,

K(K) (it/2)(l + K2/4) . (36d)

Then from Eq. (36a) it follows that

Va it {i. + 3c/ [2(l — e2)2J}. (32a)

- 

- 
From Eqs. (39) and this result Eq. (32b) follows immediately. Also, from —

Eqs. (34) it follows that if K is small,

11±
22 
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~~1
- cn(1.~,K) cos~i + (K

2
/ 4 ) (Ii — ainjicosji)sinj.i, (34d)

dn(J.I ,K) 1 — (K2/2)sin2U, (34e)

so, from these approximations, Eqs. (40c, d and 41) the result in Eq. (31)

can be derived. The periodicity of the motion is assured because cn and

- dn share 4K as a period. The only remaining point is the time dependence

of r and v which can be computed directly from Eqs. (18) and involves

other elliptic functions.

I

- 
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III. GENERAL MOTION

In this section the rates of change of the energy and the angular

momentum are used to derive the first—order secular perturbations in

fo ur (a , e, i, and Q) of the six orbital elements. The analysis of the

preceding section has determined the changes in the other two except for

a multiplicative dependence on inclination (which is non—zero for i — 0) and

an additive dependence on inclination (which vanishes for I — 0). At the

end of this section one version of the classical per turbation equations is

given and solved.

The potential was given in Eqs. (14, 15).

A. The Work Done by J2

The work done by J2 , dE/dt, is given by

dE/dt — — VU i. (42a)

Over the course of one revolution the change in E is

1~E — §Edt. (42b)

One can’t simply note that V x VU — 0 and use Green ’s theorem to evaluate

this though. The sign, § , means integrate around one complete circuit of

the perturbed orbit. We can not assume that this leads to the same point

In space. If we split U into U0 + ~U, where U0 — — p/r then,

24
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f~E — L~E + a — VU — r~VU1] tdt. (42c)

Now, to first—order in fl we can deform the contour for the U0 integration

to be the unperturbed orbit. Now we exploit the fact that the force due to U0

is conservative so — 0. Since ~U1 is already first—order, we can again

deform the contour and AE1 — 0. But,

(21)

so

Aa — 0 or da/dt)
e 

— 0, (43a)

where da/d t) is the first—order secular rate of change of the semi—major

axis due to J2.

B. The Torque Due to

The rate of change of the angular momentum due to is given by

d L / d t — r x F — — r x V U — - f l r x VU1, (44a)

N 

since U0 represents a central force. By direct computation we find

L — — 3(~iriz/r
5
)(y, —x, 0), (44b)

and

25
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AL a f Ldt —3~rn~stn2I 3 2 (cos~, sing , 0), (44c)
o 2na (1— e )

— (AL
~
, AL~~ AL

~
) (45a)

From Eqs. (6)

AL — (L + AL) (sin[~) + A~1)sin[i + At],

— cos1~1 + ~~]sin[i + All, cos [i + Al])  4..

AL(sin~1sini, — cos~sini, cost)

(45b)

+ L1~2(cos~sini, sin~2sini, 0)

+ LA1 (sin4)cosi, — cos~lcosi, — sini).

From Eqs. (45) we find

AL — SIi~1Sin1. — ALycoS~1sini + AL
~
cosi,

LA~2sini - AL cosQ + AL~sin~1 (45c)

LA1 — AL sitdkosi — AL cos(~cosi — AL sini,x y z

( 
so, after dividing by P and setting At/P — di/dt) etc.,

di/dt) ec 
a 0, (43b)

26
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d~/dt) 
a — 3cncosi/ [20. — e2)

2], (43c )

da/d t) sec 
a [2ea/(l — e2)]de/dt)se , (46)

where Eq. (6b) has been used to derive Eq. (46) from dL/dt)sec = 0. Equation

(46) and Eq. (43a) lead to

de/dt) — 0. (43d)sec

Equations (43) then summarize our results. We see, therefore, that the

application of the equations for the time rates of change and E and L have

simply and directly enabled us to solve two—thirds of the perturbation

problem. This approach also gives a direct physical insight into the cause

of the perturbations as well as their effects.

C. Classical Perturbation Theory

The two—body problem with the potential given in Eq. (llc) forms the

• cornerstone of celestial mechanics. It represents the situation exactly and

can be solved exactly. Hence, it is treated in all mechanics texts and is

fully developed analytically. The coordinate system represented by the six

orbital elements has become familiar and useful. Intuitively, if the total

real force in a problem only departs slightly from that given by —VU0, the

orbital elements themselves can only change slowly. This is the foundation

of classical perturbation theory. The three, second—order, differential

equations given by P — ma are replaced by six, first—order differential

27
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equations for de/d t, di/dt , etc. This can be performed in a variety of

ways for both non—conservative and conservative forces. The reduction

is purely a computational problem and can be simplified by using the

Lagrangian formalism. The important restriction is the condition of

osculation. This mathematical statement’s content is that both r and t

can be computed from the osculating values of the orbital elements via

the ordinary, two—body, Keplerian formulas.

I shall give one form of the conservative equations here. Others,

to be found in the standard reference texts, will vary in the choice of

orbital parameters. Let the perturbing force be given by

F — + V U’. (46)—pert

Then,

da/dt — 12/(na)J aU’/aM, (47a)

de/dt — ((1 — e2)/(na2.])3U’/aM — ((1 — e2)112/ [na2e])aU’/~w, (47b)

dw/dt — — (coti/[na2(l — e2)~
’2]}3U’/ai + {(1 — e2)112/ [na2e])aU’/ae, (47c)

di/dt — (coti/[na2(l — a2)U2]}~U~/Bw — {csci/[na2(l — e2)U2]}aU~ /3C~,(47d)

dfl/dt — (caci/[na
2(1 — •

2)1/2 ]}~ 3./~~ , (47e)
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dM/dt — — {(l — e2)2/j na2e])aU’/ae — 12/(na)]aU’/aa. (47f)

As an illustration of how to use these, we take

U’ — (r~i)(l — 3sin26)/(2r3) ,  (48)

from Eq. (l4a). Since U’ is already of first order, we can replace ~5 and r

via Eqs. (9b and 1) in U’ , compute the derivatives on the right—hand sides of

Eqs. (47), regard a, e, ..., as constants, and integrate. This will give us

knowledge we have not yet derived, the explicit time dependence of a, e,

as opposed to their secular rates of change. Of course, if we integrate over

a period we reproduce Eqs. (43a — d) and can derive the inclination dependence

for dw/dt and dT/dt. The latter results are

dW/dt)sec — 3sn(Scos2i — 1)/[4(]. — e2)2], (43e)

dT/dt) — — 3c(1 — 3sin2isjn2w)/[2(l — e)3]. (43f)

Note that for coa2J. 1/5 (1 • 63° 26’ 5?82 or I — 1160 33’ 54~l8) there

is no perigee advance due to ,
~2 

(in first—order theoryl).

Equations (47), or their non—conservative generalization, give us a

very powerful tool for studying long—term perturbing effects analytically

since short—period perturbations can be left out (they’ll be averaged over

anyway).
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IV. A VERY RESTRICTED THREE-BODY PROBLth

We could, of course , discuss third body perturbations within the frame-

work of classical perturbation theory. However, in its simplest formulation,

this problem admits an analytical first order solution so we’ll follow a

physicist’s approach. Moreover, this time we will solve directly for the

time dependence of r and v instead of for r(v). To set the stage the

satellite’s unperturbed orbit is circular, viz

r a a, v — 21rt/P with 41r2a3/P2 — p. (49a)

In the plane of the orbit lies another body, of mass H , also revolving

about the earth in a circular orbit,

r — a , v — 2irt/P + ~, 4w
2a~/P~ • p. (49b)

However, a >>a or P>>P . Thus, we can regard the perturbl.ng body to be fixed

for a few revolutions of the satellite (a poor approximation for the Moon but

a reasonable one for the Sun). The pc.tential for the problem is

U — — p / r — G N / I r — r~, (50)

or 
- 

-

U - -p/r - ~ 4~/ [a~ + r
2 - 2ra cos(v - v~]”2. (51)

30
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The equations of motion of the satellite are still Eqs. (Ila, b). If we

use the approximations mentioned above they become

— ~~2 — —p/r2 + pccos(v — 4k), (52a)

r~/ + 2*~ — — csin(v — ~~~ (52b)

c — (GM /a2) /GM~/a2). (52c)

For the Sun c 0.026, for the Moon c — 0.00015. We set

r a + cr1, v — 2irt/P + cvi, (53)

substitute into Eqs. (52) ,  linearize, and find

— l2tr2r
1/P

2 
— 4ira’~1/P • (p/a2)cos(2wt/P — (54a)

av1 + 4irt1/P — — (ii/a
2)sin(2,rt/P — !JI) . (54b)

As initial conditions we use

r(O) — 0, v(O) a o, (55a)

k(O) — 0, 0(0) — 2-it/P. (55b)

I 
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We can integrate the v1 equation once, substitute that into the r1

equation and then integrate it twice. We then return to the v1 equation

to find it. The answer is

n a  — 1 + c[Bcos(2irt/P + $) + (31it/P)sin(2t1t/P — j i) — 2cosj’], (56a)

v — 2nt/P — c{2Bsin(2itt/P + $) — (3rt/P)[cos(2nt/P — ~j i )  + cosji]

+ 2sin(2iTt/P — iji) + Ssiniji), (56b)

where

Bcosq — 2cos~ji, (56c)

Bsin+ — — (3/2)sin*, (56d)

and this solution is valid for times Iti ~~ P/(2irc).

Given the artificial nature of the problem, it seems best just to

illustrate the motion for a few values of e and ji. Figures 5 — 8 show the

unperturbed circular orbit as a full curve and the perturbed orbit as a

series of equally spaced dots [At — (l/36)’th of the unperturbed period] for

$ — 0(90)3600, c — 0.05 from t — 0 until t — P. From the location of M~ and

the direction of the initial velocity vector, we can simply interpret the

results. It is a numerical accident that for $ — 90° or 270° v(P) — 0.
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